derypol

PULPA Y PAPEL

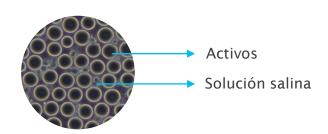
TECNOLOGÍAS EXCLUSIVAS

MEJORANDO LA PRODUCTIVIDAD Y LA CALIDAD DEL PAPEL

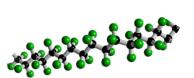
ÍNDICE

Productos para mejorar los procesos de fabricación de papel.

TECNOLOGÍAS HIMOLOC Y HYDROSOL


APLICACIÓN DE POLÍMEROS EN FÁBRICA DE PAPEL

- Retención y Drenaje
- Resistencia en Seco y Húmedo
- Adhesión entre capas
- Recuperación de fibras
- Tratamiento de aguas residuales


TRATAMIENTO DE LICOR VERDE (PULPA)

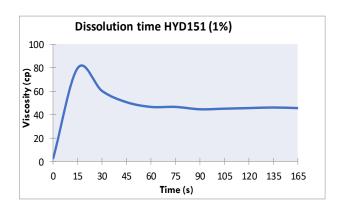
REGULATORY

¿Qué es la Tecnología HIMOLOC?

- · Poliacrilamidas (PAM) en Dispersión acuosa
- · Aspecto puro vs. Aspecto disuelto
- · Carga iónica: Catiónicos, Aniónicos, No iónicos y Anfóteros
- Estructura: Reticulados y Lineales

Producto Puro

Solución al 1%


Micropolímeros con estructura 3D (mayor accesibilidad de la carga → Incrementa Reactividad)

¿Qué es la Tecnología HYDROSOL?

- Polímero en polímero (solución)
- Producto puro: Líquido viscoso blanquecino amarillento Solución: Transparente
- Composición: CPAM (AAM/ADAMQUAT or AAM/DADMAC) + pDADMAC
- Muy bajo contenido de sal
- "Dos en uno": contiene coagulante/ATC (mejora el drenaje) y floculante (mejora la retención)
- Muy fácil de usar: Disolución rápida (Mezcladores estáticos)

Producto Puro Solución al 1%

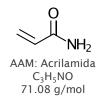
TECNOLOGÍAS HIMOLOC Y HYDROSOL

Tradicionalmente, los polímeros de acrilamida de alto peso molecular se encuentran en forma de emulsión o polvo. Las tecnologías HIMOLOC y HYDROSOL son polímeros en base acuosa.

EMULSIONS

- · Coniene tensioactivos y aceites minerales
- · Emiten VOC's
- · Equipo de preparación caro

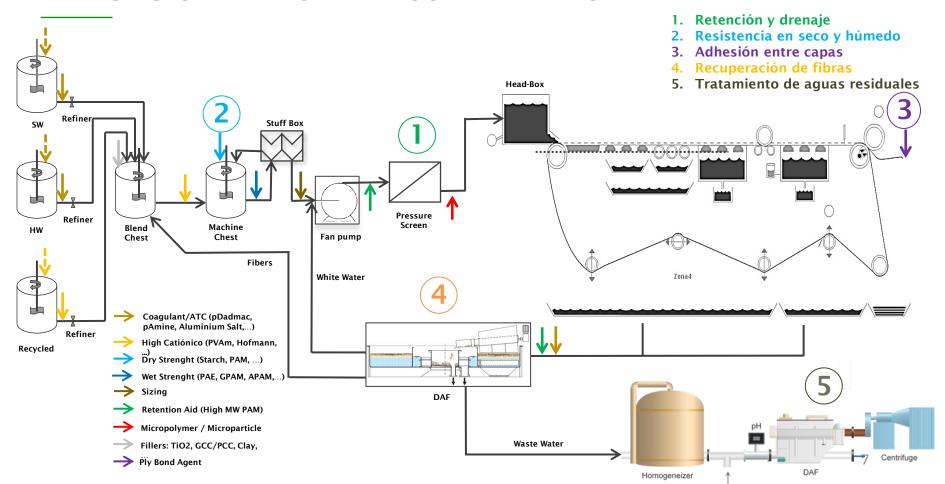
POWDERS

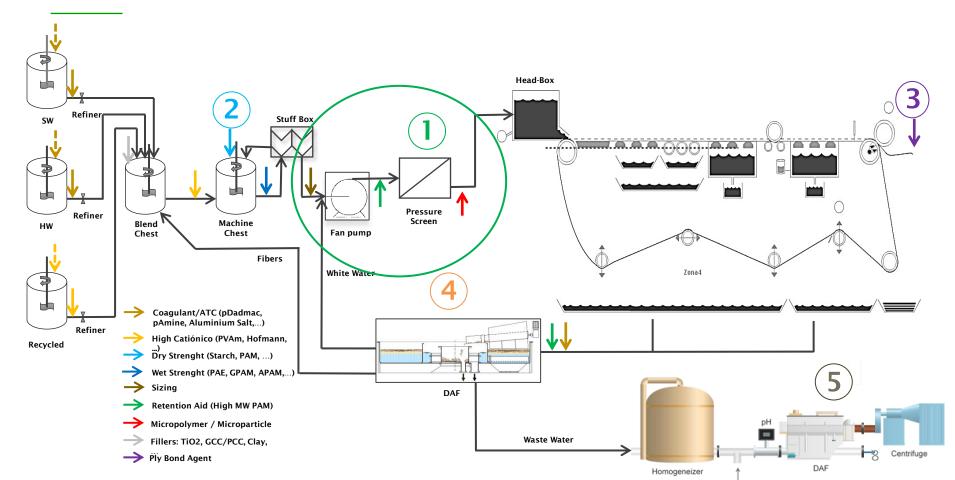

- Pequeñas partículas de polvo que pueden contaminar la atmósfera y ser explosivas
- · Equipo de preparación muy caro

HIMOLOC & HYDROSOL

- Libre de solventes, aceites minerales y tensioactivos
- · No emiten VOC's
- · Equipo de preparación fácil

FORMULACIÓN HIMOLOC Y HYDROSOL




Monómero base para la formulación de PAM's (Poliacrilamidas)

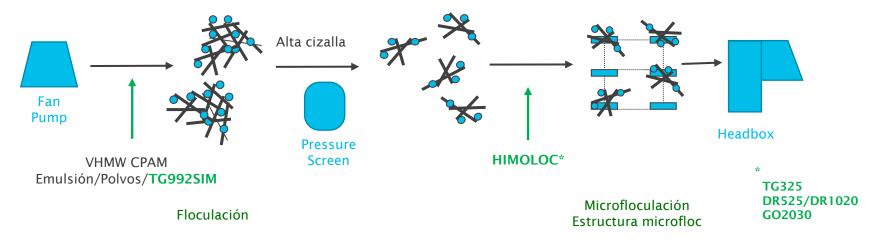
		Aniónic	o MONOMERS			
Nombre	DADMAC	MADAMQUAT	ADAMQUAT (MCQ)	BZQUAT (BZQ)	AA	AMPS
Estructura química	DADMAC C ₈ H ₁₆ CIN 161.67 g/mol	O NAD CIT Madamquat o MC75 C ₉ H ₁₈ CINO ₂ 207.7 g/mol	O N CI Adamquat o MC80 C ₈ H ₁₆ CINO ₂ 193.45 g/mol	O CF Benzoquat C ₁₄ H ₂₀ CINO ₂ 269.77 g/mol	O OH Ácido Acrílico C ₃ H ₄ O ₂ 72.06 g/mol	O Na ⁺ NaAMPS C ₇ H ₁₂ NNaO ₄ S 229.23 g/mol
Beneficios	Ayuda a neutralizar la carga superficial negativa de los coloides	Permite obtener pesos moleculares muy altos	Permite obtener pesos moleculares altos con un coste razonable	Monómero Exclusivo DERYPOL con parte hidrofóbica para sistemas con grasa y/o alta conductividad	Permite obtener pesos moleculares muy altos	Alta Resistencia a la hidrólisis. Indicado para sistemas con pH ácido y/o altas temperaturas y presiones

APLICACIÓN DE POLÍMEROS EN FÁBRICA DE PAPEL

1. POLÍMEROS DE RETENCIÓN Y DRENAJE

1. POLÍMEROS DE RETENCIÓN Y DRENAJE

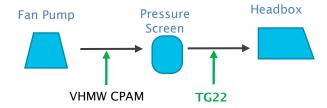
німогос	Catiónicoidad (%)	Composición	(UL)	Viscosidad	Activos
DR2500	10%	AAM/BZQ	3,4	<400 cP	15%
DR1020	10%	AAM/BZQ	3,6	<700 cP	20%
DR525	10%	AAM/BZQ	3,6	<1.500 cP	25%
TG325	10%	AAM/MCQ	4,3	<1.500 cP	20%
TG971	14%	AAM/MCQ	4,5	<1.500 cP	20%
HB3522	15%	AAM/MCQ	3,7	<1.500 cP	23%
TG22	20%	AAM/MCQ	3,2	<5.000 cP	25%
TG992SIM	20%	AAM/MCQ	5,0	<3.000 cP	20%

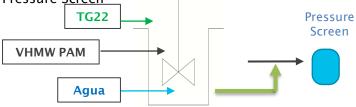

HIMOLOC	Anionicoidad (%)	Composición	(UL)	Viscosidad	Activos
GO2000	NO IÓNICO	AAM	3,9	<2.000 cP	20%
GO2010	10%	AAM/AAC	5,1	<3.000 cP	25%
GO2030	30%	AAM/AAC	5,6	<2.000 cP	25%
HYDROSOL	Catiónicoidad (%)	Compositción	(UL)	Viscosidad	Activos
HYDROSOL HYD151		Compositción AAM/MCQ	(UL) 3,5	Viscosidad <12.000 cP	Activos

- TG325: Micropolímero catiónico más vendido. Especialmente usado en papeles de embalaje.
- GO2030: Micropolímero aniónico más vendido. Especialmente usado en papeles de impresión y escritura.
- DR Series: Especialmente utilizados en circuitos de alta conductividad.
- TG22 / HB3522: Polímeros híbridos.
- HYD151: Hydrosol más vendido. Mejora el drenaje.
- TG992SIM: Nueva tecnología SIM. Especialmente diseñado para mejorar el drenaje.
- GO2000: PAM no iónica. Fácil de disolver.

1. PROGRAMAS DE RETENCIÓN Y DRENAJE

Programas exclusivos

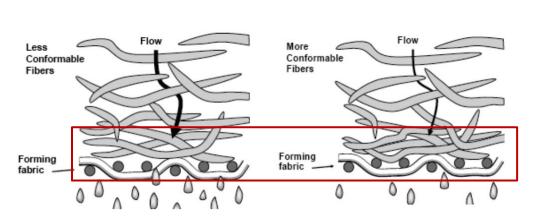

- 1. Sistema simple de retención: 1 Polímero HIMOLOC
 - Baja conductividad → TG325 / TG992SIM
 - Alta conductividad (>3.500 μ s/cm) \rightarrow DR525/DR1020
- 2. Programa de retención dual: VHMW CPAM + Polímero HIMOLOC


1. PROGRAMAS DE RETENCIÓN Y DRENAJE

Programas exclusivos

- 3. Programas híbridos: VHMW CPAM + Polímero HIMOLOC
 - i. VHMW CPAM + Polímero híbrido HIMOLOC (TG22) → Como programa de retención dual

ii. One Way Tank: VHMW Polvo / Emulsión + Polímero híbrido HIMOLOC (TG22) → Disuelto en el mismo tanque y dosificado antes del Pressure Screen



- iii. One Way Product: Polímero híbrido HIMOLOC (HB3522):
 - Combina el HIMOLOC VHMW y TG22 en un producto
 - Dosificado antes o después del Pressure Screen dependiendo de las condiciones del sistema

1. POLÍMEROS DE RETENCIÓN Y DRENAJE CON TECNOLOGÍA SIM

Tecnología exclusiva

- TG992SIM está fabricado con la tecnología SIM (Spongeability Inducer Micronet)
- El drenaje está relacionado con el volumen y la resistencia del flóculo electrostático, como se puede entender fácilmente en la Figura 1.
- La Figura 2 muestra el nivel máximo de esponjabilidad alcanzado por TG992SIM en comparación con otras PAM's similares

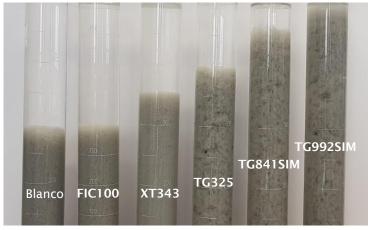
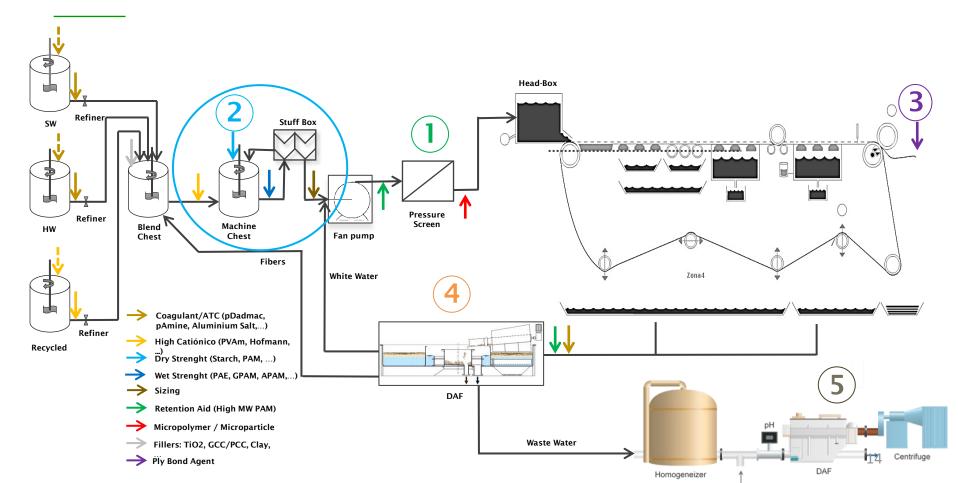


Figura 1

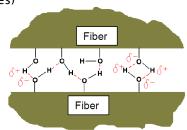
Figura 2 (300 g/Tn Activos)

1. BENEFICIOS DE LOS POLÍMEROS DE RETENCIÓN Y DRENAJE

Beneficios de las tecnologías HIMOLOC y HYDROSOL :


- · Polímeros VERDES: libres de COV's y aceites minerales
- FÁCIL DE USAR → Mezcladores estáticos
- Micropolímeros (Estructura 3D) → la carga es muy accesible, aumentando la reactividad
- Microfloculación → Mejor formación de la hoja
- HYDROSOL: 'Dos en Uno' → contiene coagulante (ATC) y polímero (PAM)
- Programas exclusivos de retención y drenaje
- · Tecnología SIM exclusiva
- Aumenta la retención de fibras y cargas y maximiza el drenaje sin comprometer la eficiencia de la presión.
- Mejora el control de depósitos → Circuitos más limpios
- Mejora la distribución de cenizas y cargas → mejor resistencia y propiedades ópticas

2. POLÍMEROS DE RESISTENCIA EN SECO Y HÚMEDO

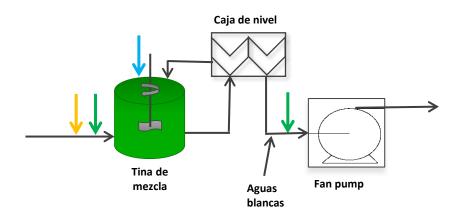

2. POLÍMEROS DE RESISTENCIA EN SECO

Producto	Descripción	Ionicidad	рН	Viscosidad	Activos
RS15	PAM (Solución)	Anfótero	2,0 - 4,0	2.000 - 5.000 cP	15%
RS19	PAM (Solución)	Anfótero	3,0 - 5,0	5.000 – 15.000 cP	16%
RS21A	PAM (Solución)	Aniónico	4,0 - 6,0	4.000 - 8.000 cP	25%

RS15	PAM (Solución)	Anfótero	2,0 - 4,0	2.000 - 5.000 cP	15%
RS19	PAM (Solución)	Anfótero	3,0 - 5,0	5.000 - 15.000 cP	16%
RS21A	PAM (Solución)	Aniónico	4,0 - 6,0	4.000 - 8.000 cP	25%

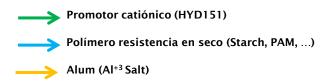
німогос	Descripción	Ionicidad	рН	Viscosidad	Activos
ZW261	PAM (Dispersión)	Anfótero	4,0 - 6,0	<2.000 cP	22%
RX4	PAM (Dispersión)	Anfótero	4,0 - 6,0	<1.000 cP	21%
RX44B	PAM (Dispersión)	Anfótero	4,0 - 6,0	<1.000 cP	21%
GOX301	PAM (Dispersión)	Aniónico medio	3,0 - 5,0	<2.000 cP	25%
GOX101	PAM (Dispersión)	Aniónico bajo	3,0 - 5,0	<2.000 cP	25%

Mejora las Propiedades Mecánicas y la Formación de la Hoja aumentando la fuerza de los enlaces químicos (Hidrógeno-Hidrógeno, Iónicos y covalentes)



- Adecuados para circuitos con un amplio rango de pH y conductividad
- Disminuyen el consumo de almidón solucionando problemas ambientales (DQO) y manteniendo los circuitos más limpios
- Polímeros Fácil de Usar → Pump & Go
- Polímeros HIMOLOC → Mayor cantidad de activos para mejorar Performance/Cost
- GOX301 & GOX101: Nuevos y exclusivos DSA's
- RX4 & RX44B: Nuevos DSA's Multifuncionales

2. PROGRAMAS DE RESISTENCIA EN SECO


Programas exclusivos

- 1. Programas simples con almidón
 - ✓ Conductividad Baja y pH Ácido → Alum / Almidón nativo o catiónico + PAM (ZW261 / RS15 / RS19)
 - ✓ Conductividad Alta y pH Neutro → Cat Starch + PAM (RS21A / GOX301 / GOX101)
- 2. Programa dual: Promotor catiónico (HYD151) + PAM (RS21A / GOX301 / GOX101 / ZW261)
- 3. **Programa completo**: Almidón nativo o catiónico + PAM aniónico (RS21A / GOX301 / GOX101) + Promotor catiónico (HYD151)

Dosis recomendada:

- PAM → 1 4 Kg/Tn Activos
- Alum (Al⁺³ Salt) \rightarrow 2 5 Kg/Tn Sólidos
- Almidón → 4 10 Kg/Tn Sólidos
- HYD151 \rightarrow 2 8 Kg/Tn prod. comercial

2. POLÍMEROS REFORZANTES MULTIFUNCIONALES

HIMOLOC RX4 & RX44B

- REFORZANTE Propiedades de Resistencia en seco mejoradas
- RETENCIÓN Aumenta la retención de fibras y finos
- DRENAJE 3 Maximiza el drenaje sin comprometer la eficiencia del prensado permitiendo aumentar la velocidad de máquina
- FIIACIÓN Mejora de diferentes propiedades de imprimibilidad

BENEFICIOS

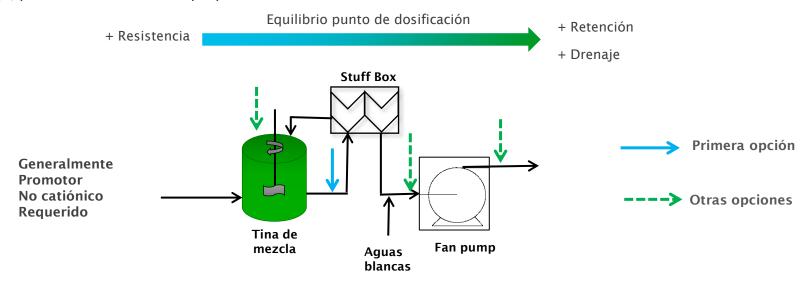
SIMPLICIDAD

- Simplifica el programa de químicos en la parte húmeda
- Fácil de usar

ESTABILIDAD

- · Circuitos más limpios
- Menos roturas
- Mejores propiedades del papel
- Mejora la resistencia en seco, el encolado y la productividad
 - · Mayor eficiencia del encolado
 - Incrementa velocidad de máquina

Mejora del coste / rendimiento


- Ahorro de energía (vapor)
- Permite utilizar fibras de menor coste (recicladas)

17

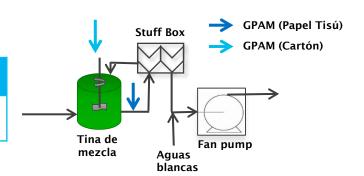
2. POLÍMEROS REFORZANTES MULTIFUNCIONALES

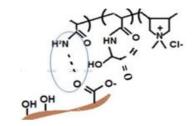
APLICACIÓN HIMOLOC RX4 & RX44B

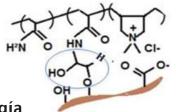
El punto de dosificación depende de sus necesidades. Cuanto más cerca del Head-Box mejor será la retención y el drenaje, pero menores serán las propiedades de resistencia.

Dosis recomendada: 4 - 12 Kg/Tn tal cual

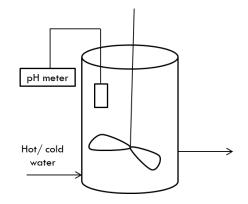
2. POLÍMERO DE RESISTENCIA EN SECO Y HÚMEDO TEMPORAL


Poliacrilamida Glioxalada Catiónica (GPAM)


Producto	Descripción	Ionicidad	рН	Viscosidad	Activos	Vida útil
ADG1	GPAM (Solución)	Catiónico	2,0 - 3,0	<25cP	7%	< 1 mes


Dosis Recomendada: 1,0 - 2,5 Kg/Tn Activos (15 - 35 Kg/Tn tal cual)

- Resistencia en seco permanente → El grupo amino reacciona con los grupos hidroxilo y carboxilo de la celulosa formando enlaces de hidrógeno
- Resistencia en húmeda temporal → Los grupos aldehídos reaccionan con el hidroxilo para formar enlaces covalentes y hemiacetálicos (formación temporal de enlaces, baja reticulación)
- Adecuado para 4<pH<7 y conductividad <3.000 cP
- · Especialmente utilizado en papel tisú.
- Posibilidad de fabricar in situ (fábrica de papel)

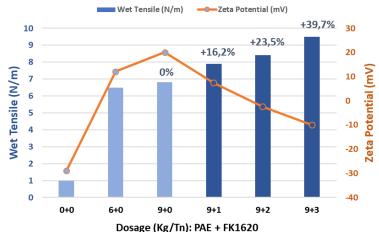


2. POLÍMERO DE RESISTENCIA EN SECO Y HÚMEDO TEMPORAL

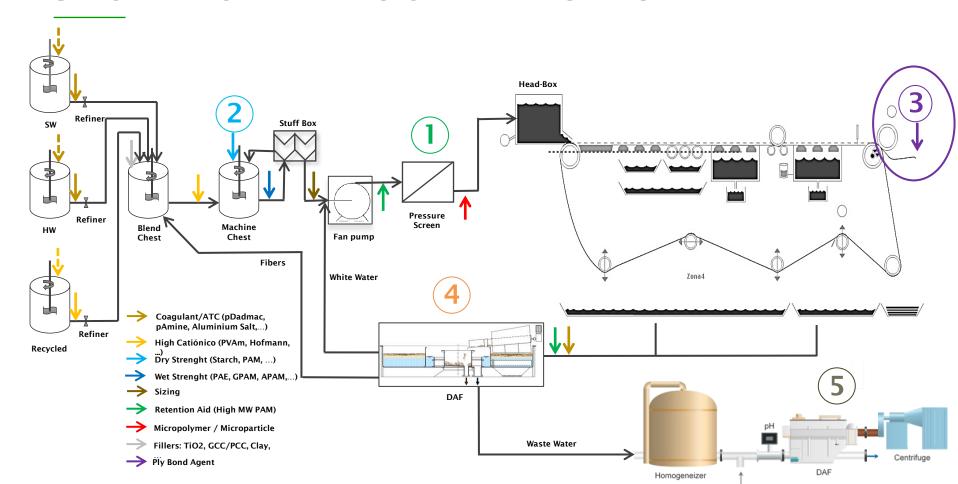
GPAM → Transferencia de tecnología a partir de K244

Producto	Descripción	Ionicidad	рН	Viscosidad	Activos	Vida útil
K244	Dadmac /Aam Copolymer	Catiónico	4,0 - 6,0	<1.500 cP	44%	12 meses

- Fabricar GPAM in situ ha generado un renovado interés por este producto, debido al aumento de la resistencia, mejora del drenaje, extensión de la vida útil y la reducción de los costos de transporte
- · GPAM se fabrica a partir de la reacción de reticulación del K244 con glioxal
- · No se necesitas equipos de alta tecnología
- Bajo costo del proceso de fabricación
- Diferentes formulaciones disponibles con diferente estabilidad y rendimiento
- Transferencia de Tecnología incluyendo formación industrial y de laboratorio disponible

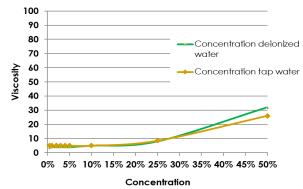

2. BOOSTER REFORZANTES EN HÚMEDO

Producto	Descripción	Ionicidad	рН	Viscosidad	Activos
FK1620	PAM (Solución)	Aniónico	3,5 - 5,0	3.000-7.500 cP	20%
RS21A	PAM (Solución)	Aniónico	4,0 - 6,0	4.000-8.000 cP	25%


Stuff Box PAE (7-15 Kg/Tn) Reforzante (1-3 Kg/Tn) Tina de mezcla Aguas Blancas

Beneficios:

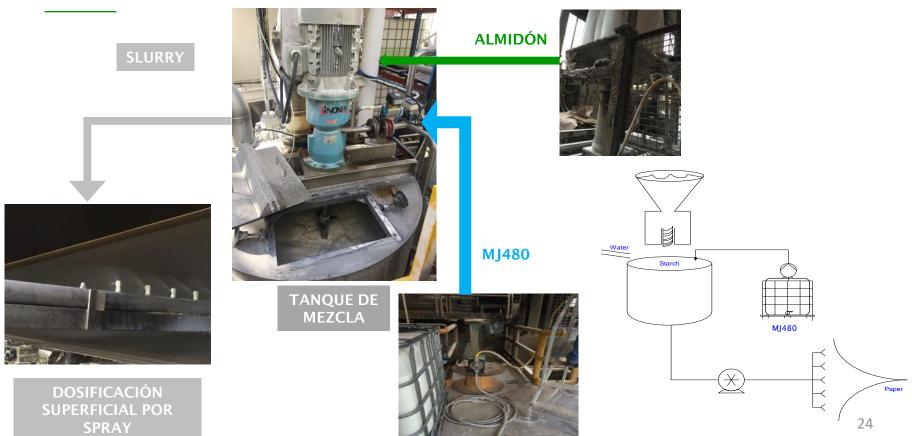
- Los BOOSTER invierten la carga de la fibra a aniónica, proporcionando sitios extra para la retención del Reforzante en Húmedo catiónico → Mejora la fijación de PAE (Poliamino Poliamida Epiclorhidrina)
- · Aumenta la Resistencia a la Tensión en seco y húmedo
- Reduce la dosis de PAE hasta un 30%
- · Ayuda a controlar el potencial Zeta
- Reduce la dosis de antiespumante hasta un 40%.
- Mejora el control del crepado aumentando la velocidad del Yankee
- · Mejora el funcionamiento de la máquina y la velocidad de producción
- Fácil de usar → Pump & Go
- · Ahorro económico



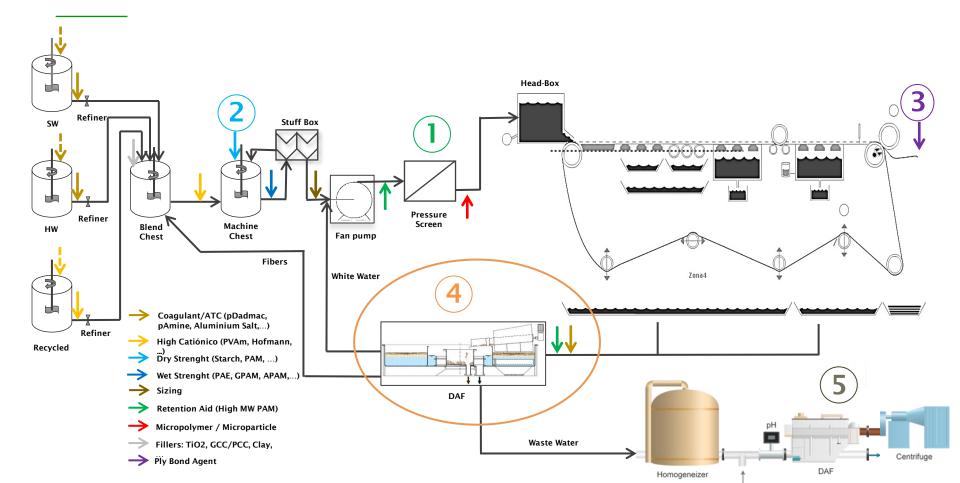
3. POLÍMERO DE ADHESIÓN ENTRE CAPAS

3. POLÍMERO DE ADHESIÓN ENTRE CAPAS

HIMOLOC	Descripción	Ionicidad	Peso Molecular	рН	Viscosidad
MJ480	PAM (Dispersión)	Aniónico	Muy alto	2,0 - 4,0	<1.500 cP



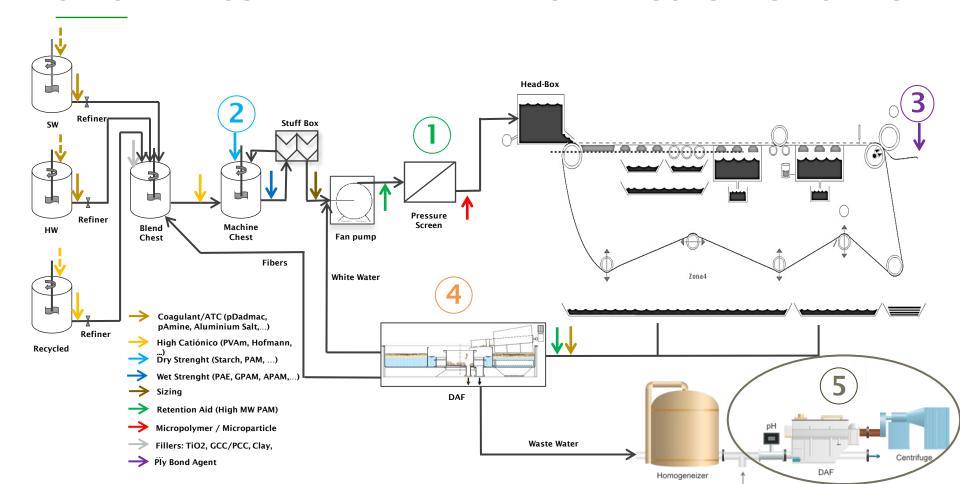
Beneficios:


- Reemplaza parcialmente el almidón nativo como adhesivo entre capas (puede reemplazar hasta el 50% con un ratio sustitución de 1:10)
- · Mejora las propiedades mecánicas (Scott Bond, Burst, CMT,...)
- Reduciendo el consumo de almidón, disminuye la DQO en las aguas residuales y mantiene los circuitos más limpios
- Disminuye el consumo de vapor y aumenta la producción: Disminuye la Tg
- · Mejor imagen ambiental: Disminuye la huella de carbono
- Fácil de usar: Se dosifica directamente al tanque del slurry de almidón sin aumentar su viscosidad
- AHORROS ECONÓMICOS

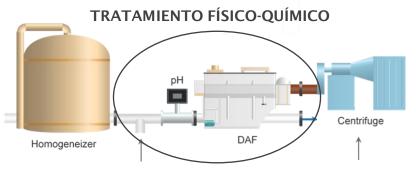
3. POLÍMERO DE ADHESIÓN ENTRE CAPAS

SISTEMA DE DOSIFICACIÓN SIMPLE

4. POLÍMEROS DE RECUPERACIÓN DE FIBRAS


4. POLÍMEROS DE RECUPERACIÓN DE FIBRAS

HIMOLOC	Carga iónica	Ionicidad (%)	Composición	(UL)	Viscosidad
DR2200	Catiónico	4%	AAM/BZQ	3,3	<1.000 cP
DR2500	Catiónico	10%	AAM/BZQ	3,4	<400 cP
DR525	Catiónico	10%	AAM/BZQ	3,6	<1.500 cP
TG992SIM	Catiónico	20%	AAM/MCQ	5,0	<2.500 cP
GO2000	No iónico	0%	AAM	3,9	<2.000 cP
GO2010	Aniónico	10%	AAM/AAC	5,1	<3.000 cP
GO2030	Aniónico	30%	AAM/AAC	5,6	<2.000 cP
GO7130	Aniónico	30%	AAM/AAC/AMPS	6,2	<500 cP
ZW111	Anfótero	30%/15%	AAM/BZQ/AAC/MCQ	2,9	<1.500 cP
ZW322	Anfótero	50%/20%	AAM/BZQ/AAC/MCQ	3,0	<1.500 cP

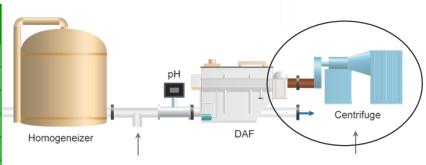

- DR525: El micropolímero catiónico más vendido
- · GO2030: El micropolímero aniónico más vendido
- DR's: Especialmente usados en circuitos con alta conductividad
- ZW's: PAM Anfótera
- Tecnología SIM exclusiva

5. POLÍMEROS PARA TRATAMIENTO DE AGUAS RESIDUALES

5. POLÍMEROS PARA TRATAMIENTO DE AGUAS RESIDUALES

німогос	Carga iónica	Ionicidad (%)	Composición	(UL)	Viscosidad
DR2200	Catiónico	4%	AAM/BZQ	3,3	<1.000 cP
DR525	Catiónico	10%	AAM/BZQ	3,6	<1.500 cP
TG992SIM	Catiónico	20%	AAM/MCQ	5,0	<2.500 cP
TG30	Catiónico	35%	AAM/MCQ/BZQ	3,6	<1.000 cP
TG823	Catiónico	35%	AAM/MCQ/BZQ	3,6	<2.500 cP
TG995	Catiónico	50%	AAM/MCQ/BZQ	5,0	<2.000 cP
TG60	Catiónico	64%	AAM/MCQ/BZQ	3,8	<2.000 cP

HIMOLOC	Carga iónica	lonicidad (%)	Composición	(UL)	Viscosidad
GO2000	No iónico	0%	AAM	3,9	<2.000 cP
GO2010	Aniónico	10%	AAM/AAC	5,1	<3.000 cP
GO2030	Aniónico	30%	AAM/AAC	5,6	<2.000 cP
GO7130	Aniónico	30%	AAM/AAC/AMPS	6,2	<500 cP
ZW111	Anfótero	30%/15%	AAM/BZQ/AAC/MCQ	2,9	<1.500 cP
ZW322	Anfótero	50%/20%	AAM/BZQ/AAC/MCQ	3,0	<1.500 cP


- DR's: Especialmente utilizados en circuitos con conducitividad elevada
- ZW's: PAM Anfótera
- Tecnología SIM exclusiva

5. POLÍMEROS PARA TRATAMIENTO DE AGUAS RESIDUALES

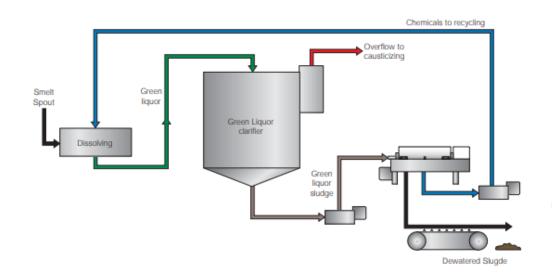
PAM lineal (tornillo prensa, filtro banda, ...)

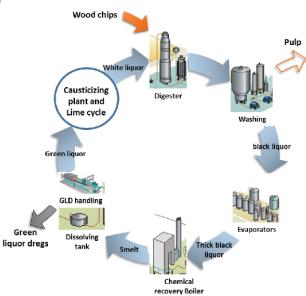
HIMOLOC	Carga Iónica	Ionicidad (%)	Composición	(UL)	Viscosidad
TG992SIM	Catiónico	20%	AAM/MCQ	5,0	<2.500 cP
TG30	Catiónico	35%	AAM/MCQ/BZQ	3,6	<1.000 cP
TG823	Catiónico	35%	AAM/MCQ/BZQ	3,6	<2.500 cP
TG995	Catiónico	50%	AAM/MCQ/BZQ	5,0	<2.000 cP
TG60	Catiónico	64%	AAM/MCQ/BZQ	3,8	<2.000 cP
TG998	Catiónico	80%	AAM/MCQ/BZQ	5,0	<2.000 cP

DESHIDRATACIÓN DE LODOS

PAM reticuladas (centrífuga, filtro prensa, tornillo prensa, ...)

HIMOLOC	Carga iónica	Ionicidad (%)	Composición	(UL)	Grado reticulación	Viscosidad
TX950	Catiónico	50%	AAM/MCQ /BZQ	2,0	Muy Alto	<2.500 cP
TX9550	Catiónico	50%	AAM/MCQ /BZQ	3,5	Medio - Alto	<2.500 cP
TX7360	Catiónico	64%	AAM/MCQ /BZQ	3,7	Medio	<2.500 cP
TX980	Catiónico	80%	AAM/MCQ /BZQ	2,5	Muy alto	<2.000 cP
TX9880	Catiónico	80%	AAM/MCQ /BZQ	3,8	Medio	<2.500 cP


Beneficios:


- Libre de disolventes y tensoactivos → Lodo final y agua con menos COV's
- Facilidad de preparación → Mezclador estático

TRATAMIENTO LICOR VERDE (FABRICACIÓN PULPA)

HIMOLOC	Carga Iónica	lonicidad (%)	Composición	(UL)	Viscosidad
GO5077	Aniónico	50%	AAM/AAC/AMPS	5,3	<1.000 cP
DR2500	Catiónico	10%	AAM/BZQ	3,4	<400 cP
TG325	Catiónico	10%	AAM/MCQ	4,3	<1.500 cP

 Polímeros exclusivos de fácil preparación y alta eficacia para la clarificación del Licor Verde

REGULATORY

- El estándar HIMOLOC establecido en <250 ppm de AAM residual
- Nordic Swan / Ecolabel Disponemos de productos bajo estos requisitos
- Serie AB Podemos proveer productos con acrilamida residual por debajo de la demanda del cliente
- Acrylamide Free También tenemos polímeros libres de acrilamida

Product	FDA	BfR	GB9685
ADG1	Χ	\checkmark	\checkmark
DR2500	X	√	Χ
DR1020	X	\checkmark	X
DR525	Χ	./	Χ
FK1620	\checkmark	$\sqrt{}$	√
GO2000	\checkmark	√ /	√ √
GO2010	\checkmark	\checkmark	
GO2030	\checkmark	√	√ √
GOX301	\checkmark	\checkmark	\checkmark
GOX101	√	√ √ X	√
GO7130	X	X	X
HB3522	X	√ √	
HYD151	√	\checkmark	√ √
HYD252	\checkmark	√ ,	√ √ √
K244	√	\checkmark	\checkmark
MJ480	\checkmark	√ √	
RS15	X	√	X
RS19	X	Х	X
RS21A	\checkmark	\checkmark	\checkmark
RX4	*	*	X
RX44B	*	√	Х
TG22	X	√ √	X
TG325	√	√	√ X √ X
TG971	X	\checkmark	X
TG992SIM	X	√	$\sqrt{}$
ZW261	*	*	Χ

RESUMEN PRODUCTOS PARA PAPEL

O1 RETENCIÓN Y DRENAJE

HIMOLOC TG & GO
PAM's Catiónico/Aniónico
- best seller

HIMOLOC TG22 & GO2030
Mejora el drenaje y reemplaza los PEI y las micropartículas.

RESISTENCIA EN SECO Y HÚMEDO

HIMOLOC ZW & GOX
PAM'S Anfóteros y Aniónicos para resistencia en seco
HIMOLOC RX4 - DSA multifuncional (4-en-1) Mejora las propiedades mecánicas, así como la retención y el drenaje.

Serie HYDROSOL- Reduce el almidón catiónico y mejora los

FK1620 / RS21A - Mejora la fijación PAE (WSR) y el Control del

03 ADHESIÓN ENTRE CAPAS

Potencial Z

programas de resistencia en seco.

K244 - Base para la fabricación de GPAM

HIMOLOC MJ480 - Reemplaza el almidón nativo y mejora las propiedades mecánicas

14 RECUPERACIÓN DE FIBRAS

HIMOLOC TG & DR – PAM's catiónicos para circuitos con alta conductividad – mejora los sistemas de flotación

05 AGUAS RESIDUALES

HIMOLOC TG/TX/DR/GO - PAMs Floculantes para tratamiento Físico-Químico

06 LICOR VERDE (PULPA)

HIMOLOC TG & GO - Clarificación del Licor Verde en el Proceso de Pulpa

07 AGENTE DE DISPERSIÓN DE RECUBRIMIENTO DE PAPEL

BF43M/C150 – Diseñado para formulaciones de recubrimiento de papel pigmentado para lograr una buena reología y estabilidad de la mezcla del recubridor.

08 AGENTE SUAVIZANTE

SFT24 - Polímero de emulsión catiónica que mejora la suavidad y la retención de fibras en papel tisú

09 DESESPUMANTE

DB511SF - libre de silicona (aprobado por FDA/BFR)

5 IDEAS PARA RECORDAR

TECNOLOGÍA EXCLUSIVA

Ofrecemos una tecnología líder en su sector que permite obtener soluciones diferentes y más beneficiosas.

VERDE Y AZUL

Nuestros polímeros están libres de disolventes, aceites minerales y tensioactivos. No emiten COV's a la atmósfera.

MEJOR RENDIMIENTO

Adaptamos la composición monomérica y la estructura del polímero para ofrecer el mejor rendimiento en cada aplicación.

PRODUCTIVIDAD Y CALIDAD

Polímeros funcionales y operativos únicos para mejorar las propiedades mecánicas del papel y la retención y el drenaje del proceso productivo.

PROGRAMAS

Programas exclusivos e innovadores para aprovechar al máximo sus procesos y marcar la diferencia.

¡Gracias por su atención!

derypol

